R-matrix analysis of reactions in the ⁹B compound system

M. Paris, G. Hale, A. Hayes, & G. Jungman

T-2 Theoretical Division Los Alamos
National Lab

ND2013 Nuclear Data for Science and Technology

March 4-8, New York, NY

LA-UR-13-21473

Outline

- Motivation: ENDF/ENSDF evaluations, 9B in BBN/7Li destruction
- R-matrix formalism: T-matrix/observables, EM channels, EDA code
- Summary of ⁹B data: DCS, σ
- Analysis: χ²/N_{data}, resolution broadening
 - → Used earlier 3-channel evaluation by G. Hale, added capture channel
- Resonance stucture: implications for BBN
- Summary, findings & future work

Motivation

Cross section evaluation & resonance structure

→ Nucl. Phys. A745, 155, 2004(2011)

$E_{ m x}$ a (MeV \pm keV)	$J^{\pi};T$	Γ _{c.m.} (keV)	Decay
16.024 ± 25	$T = \left(\frac{1}{2}\right)$	180 ± 16	
$16.71 \pm 100 ^{ m h}$	$\left(\frac{5}{2}^+\right);\left(\frac{1}{2}\right)$		
17.076 ± 4	$\frac{1}{2}^-; \frac{3}{2}$	22 ± 5	$(\gamma, {}^{3}\text{He})$
17.190 ± 25		120 ± 40	p, d, ³ He
$17.54 \pm 100^{\rm \ h,i}$	$(\frac{7}{2}^+); (\frac{1}{2})$		
$17.637 \pm 10^{\text{ i}}$		71 ± 8	$p, d, {}^{3}He, \alpha$

Astrophysical applications

- →Big bang nucleosynthesis
 - Nuclear physics solution to ${}^{7}Li$ predicted overproduction problem? (cf. Hoyle)
 - Details next slide.

Purpose within Los Alamos Nat. Lab programmatic

- →Continue the R-matrix program for various end-users
- →Ongoing/upcoming analysis releases: ⁷Be, ¹³C [G. Hale Tues. Session GA 2], ¹⁴C, ¹⁷O, ...

A nuclear physics solution to the BBN ⁷Li problem?

Primordial nucleosynthesis

- → Probes early universe w/in standard model
- →Big-bang nucleosynthesis: D,⁴He,⁷Li abundances
- →D,⁴He abundances agree with theo/expl uncertainties
- →At η_{wmap} (CMB) ${}^{7}\text{Li/H}|_{BBN} \sim (2.2-4.2)^{*7}\text{Li/H}|_{halo^*}$
- →Discrepancy ~ 4.5-5.5σ→ the "Li problem"

Resonant destruction ⁷Li (Hoyle-type solution)

- → Prod. mass 7 "well understood"; destruction not
- → Cyburt & Pospelov *arXiv:0906.4373; IJMPE, 21(2012)*
 - ⁷Be(d,p)αα & ⁷Be(d,y)⁹B resonant enhancement
 - Identify ⁹B E_{5/2+}~16.7 MeV~E_{thr}(d+⁷Be)+200 keV
 - Near threshold
 - (E_r,Γ_d)²(170–220,10–40) keV solve Li problem
- → Chakraborty, Fields & Olive PRD83, 063006 (2011)
 - More general approach: A=8,9,10 & 11
 - Identify as possibly important: ⁹B, ¹⁰B, ¹⁰C
- → 'Large' widths
 - Both conclude "large channel radius" required

NB: both approaches assume validity of TUNL-NDG tables

UNCLASSIFIED

R-matrix formalism

INTERIOR (Many-Body) REGION (Microscopic Calculations)

$$R_{c'c} = (c' \mid (H + \mathcal{L}_B - E)^{-1} \mid c) = \sum_{\lambda} \frac{(c' \mid \lambda)(\lambda \mid c)}{E_{\lambda} - E}$$

• Bloch operator $\mathcal{L}_B = \sum_c |c)(c) \left[\frac{\partial}{\partial r_c} r_c - B_c \right]$ ensures Hermiticity of Hamiltonian restricted to internal region

- R-matrix theory: unitary, multichannel parametrization of (not just resonance) data
- Interior/Exterior regions
 - →Interior: strong interactions
 - →Exterior: Coulomb/non-polarizing interactions
 - →Channel surface

$$S_c: r_c = a_c$$
 $S = \sum_c S_c$

- R-matrix elements
 - ightharpoonup Projections on channel surface functions $(\mathbf{r}_c|c)$ of Green's function

$$G_B = [H + \mathcal{L}_B - E]^{-1}$$

→Boundary conditions

$$B_c = \frac{1}{u_c(a_c)} \frac{du_c}{dr_c} \Big|_{r_c = a_c}$$

- E-M channels
 - →Next slide

ASYMPTOTIC REGION

(S-matrix, phase shifts, etc.)

Electromagnetic channels

One-photon sector of Fock space

→Photon 'wave function'

$$\mathbf{A}_{\mathbf{k}}(\mathbf{r}) = \left(\frac{2}{\pi\hbar c}\right)^{1/2} \sum_{jm} i^{j} \sum_{\lambda', \lambda = e, m, 0} \mathbf{Y}_{jm}^{(\lambda')}(\hat{\mathbf{r}}) u_{\lambda'\lambda}^{j}(r) \mathbf{Y}_{jm}^{(\lambda)}(\hat{\mathbf{k}}) \cdot \chi$$

→Radial part

$$u_{ee}^{j} = -[f'_{j}(\rho) + t_{ee}^{j}h_{j}^{+'}(\rho)] \qquad u_{0e}^{j} = -\frac{\sqrt{j(j+1)}}{\rho}[f_{j}(\rho) + t_{e0}^{j}h_{j}^{+}(\rho)]$$

$$u_{mm}^{j} = [f_{j}(\rho) + t_{mm}^{j}h_{j}^{+}(\rho)] \qquad u_{0m}^{j} = u_{me}^{j} = u_{em}^{j} = 0$$

→Photon channel surface functions

$$(\mathbf{r}_c|c) = \left(\frac{\hbar c}{2\rho_\gamma}\right)^{1/2} \frac{\delta(r_\gamma - a_\gamma)}{r_\gamma} \left[\phi_{s\nu} \otimes \mathbf{Y}_{jm}^{(e,m)}(\hat{\mathbf{r}}_\gamma)\right]_{JM}$$

- Photon 'mass': $\hbar k_{\gamma}/c$
- →R-matrix definition preserved

$$(c'|\psi) = \sum_{c} R_{c'c}^{B}(c|\frac{\partial}{\partial r_c}r_c - B_c|\psi)$$

R-matrix definition preserved
$$(c'|\psi) = \sum_{c} R_{c'c}^{B}(c|\frac{\partial}{\partial r_{c}}r_{c} - B_{c}|\psi)$$

$$R_{L} = [\mathbf{R}_{B}^{-1} - \mathbf{L} + \mathbf{B}]^{-1}$$

$$\mathbf{L} = \rho \mathbf{O}' \mathbf{O}^{-1}$$

$$F = \operatorname{Im} \mathbf{O}$$

Implementation in EDA

EDA = Energy Dependent **Analysis**

$$\rightarrow$$
Adjust $E_{\lambda} \& \gamma_{c\lambda}$

Any number of two-body channels

→Arbitrary spins, masses, charges (incl. mass zero)

Scattering observables

→ Wolfenstein trace formalism

Data

- →Normalization
- →Energy shifts
- →Energy resolution/spread

Fit solution

$$\chi^2_{EDA} = \sum_{i} \left[\frac{nX_i(\mathbf{p}) - R_i}{\delta R_i} \right]^2 + \left[\frac{nS - 1}{\delta S/S} \right]^2$$

Summary of included ⁹B data

- ⁶Li+³He elastic Buzhinski et.al., Izv. Rossiiskoi Akademii Nauk, Ser.Fiz., Vol.43, p.158 (1979)
 - → Differential cross section
 - →1.30 MeV < E(³He) < 1.97 MeV
- ⁶Li+³He → p+⁸Be* Elwyn et.al., Phys. Rev. C 22, 1406 (1980)
 - →Integrated cross section
 - →Quasi-two-body, excited-state averaged final channel
 - \rightarrow 0.66 MeV < E(³He) < 5.00 MeV
- ⁶Li+³He → d+⁷Be D.W. Barr & J.S. Gilmore, unpublished (1965)
 - →Integrated cross section
 - \rightarrow 0.42 MeV < E(³He) < 4.94 MeV
- $^{6}\text{Li+}^{3}\text{He} \rightarrow \gamma + ^{9}\text{B}$ Aleksic & Popic, Fizika 10, 273-278 (1978)
 - →Integrated cross section
 - \rightarrow 0.7 MeV < E(³He) < 0.825 MeV
 - → New to ⁹B analysis
- Data for future evaluation
 - →Separate ⁸Be* states
 - <u>2</u>⁺<u>@200 keV [16.9 MeV]</u>, 1⁺<u>@650 keV [17.6 MeV]</u>, <u>1</u>⁺<u>@1.1 MeV[18.2 MeV]</u>
 - \rightarrow n+8B: E_{thresh}(3He) = 3 MeV
 - →Simultaneous analysis with ⁹Be mirror system

EXFOR/CSISRS database (in C4 format)

All data from

R-matrix configuration in EDA code

Hadronic channels (in blue, not included)

$A_1 A_2^{\pi}$	$^3\mathrm{He}^6\mathrm{Li}^{-1}$	+(1)	$p^8 \mathrm{Be}^*$	(+(2)	$d^7 \mathrm{Be}^-$ (3)			
ℓ S	$\frac{3}{2}$	$\frac{1}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	
0	$^{4}S_{3/2}$	$^{2}S_{1/2}$	$^{6}S_{5/2}$	$^{4}S_{3/2}$	$^{6}S_{5/2}$	$^{4}S_{3/2}$	$^{2}S_{1/2}$	
1	$^4P_{5/2,3/2,1/2}$	$^{2}P_{3/2,1/2}$	$^{6}P_{7/2,5/2,3/2}$	$^4P_{5/2,3/2,1/2}$	$^{6}P_{7/2,5/2,3/2}$	$^4P_{5/2,3/2,1/2}$	$^{2}P_{3/2,1/2}$	
2	$^4D_{7/2,5/2,3/2,1/2}$	$^2D_{5/2,3/2}$	$ ^{6}D_{9/2,7/2,5/2,3/2,1/2} $		$ ^6D_{9/2,7/2,5/2,3/2,1/2} $	$^4D_{7/2,5/2,3/2,1/2}$	$^{2}D_{5/2,3/2}$	
_ /		400	•	40.7			40 5	

 $E_{thr}(CM, MeV)$ 16.6

16.7

16.5

Electromagnetic channel: $\gamma + {}^{9}B \longrightarrow E_{1}^{3/2}, M_{1}^{5/2}, M_{1}^{3/2}, M_{1}^{1/2}, E_{1}^{5/2}, E_{1}^{1/2}$

Full model space: state number; channel pair; LS; J; channel radius [fm]

1	1	4s	3/2	7.5000000f	20	1	4p	1/2	7.50000000f
2	1	4d	3/2	7.5000000f	21	1	2p	1/2	7.50000000f
3	1	2d	3/2	7.5000000f	22	2	4p	1/2	5.50000000f
4	2	4s	3/2	5.5000000f	23	3	2s	1/2	7.0000000f
5	3	6p	3/2	7.0000000f	24	4	M1	1/2	50.0000000f
6	3	4p	3/2	7.0000000f	25	1	4d	7/2	7.50000000f
7	3	2p	3/2	7.0000000f	26	3	6p	7/2	7.0000000f
8	4	E1	3/2	50.0000000f	27	1	4d	5/2	7.50000000f
9	1	4p	5/2	7.5000000f	28	1	2d	5/2	7.50000000f
10	2	6p	5/2	5.5000000f	29	2	6s	5/2	5.50000000f
11	2	4p	5/2	5.5000000f	30	3	6p	5/2	7.0000000f
12	3	6s	5/2	7.0000000f	31	3	4p	5/2	7.0000000f
13	4	M1	5/2	50.0000000f	32	4	E1	5/2	50.0000000f
14	1	4p	3/2	7.5000000f	33	1	4d	1/2	7.50000000f
15	1	2p	3/2	7.5000000f	34	1	2s	1/2	7.50000000f
16	2	6p	3/2	5.5000000f	35	3	4p	1/2	7.0000000f
17	2	4p	3/2	5.5000000f	36	3	2p	1/2	7.0000000f
18	3	4s	3/2	7.0000000f	37	4	E1	1/2	50.0000000f
19	4	M1	3/2	50.0000000f	38	2	6p	7/2	5.5000000f
				UNCLASSIFIED					

Analysis result: resonance structure

Ex(MeV)	Jpi	Gamma(keV)	Er(MeV)	ImEr(MeV)	E(3He)	Strength
16.46539	1/2-	768.46	 1369	-0.3842	-0.2054	0.06 weak
17.11317	1/2-	0.14	0.5109	-0.6771E-04	0.7664	1.00 strong
17.20115	5/2 -	871.63	0.5989	-0.4358	0.8984	0.40 weak
17.28086	3/2-	147.78	0.6785	-0.0739	1.0178	0.77 strong
17.66538	5/2+	33.33	1.0631	-0.0167	1.5947	0.98 strong
17.83619	7/2+	2036.21	1.2339	-1.0181	1.8509	0.15 weak
17.84773	3/2-	42.52	1.2454	-0.0213	1.8681	0.97 strong
18.04821	3/2+	767.11	1.4459	-0.3836	2.1689	0.54 weak
18.42292	1/2+	5446.32	1.8206	-2.7232	2.7309	0.03 weak
18.67716	1/2-	10278.41	2.0749	-5.1392	3.1124	0.15 weak
19.60923	3/2-	1478.22	3.0069	-0.7391	4.5104	0.52 weak

S-matrix pole & residue Hale, Brown, Jarmie PRL 59 '87

$$\mathcal{E}_{\lambda'\lambda} = E_{\lambda}\delta_{\lambda'\lambda} - \sum_{c} \gamma_{c\lambda'} [L_c(E) - B_c] \gamma_{c\lambda}$$
$$E_0 = E_r - i\Gamma/2 \quad \text{residue: } i\rho_0 \rho_0^T$$

NB: no strong resonance seen ~100 keV of ³He+⁶Li threshold

strength =
$$\frac{1}{\Gamma} \rho_0^{\dagger} \rho_0 = \frac{1}{\Gamma} \sum_c \Gamma_c$$

$$\rho_{0c} = \left(\frac{2k_{0c}a_c}{N}\right)^{1/2} \mathcal{O}_c^{-1}(k_{0c}a_c) \sum_{\lambda} (\lambda | \mu_0)$$

$$N = \sum_{\lambda \lambda} (\lambda | \mu_0)(\lambda' | \mu_0) \left[\delta_{\lambda'\lambda} + \sum_c \gamma_{c\lambda'} \frac{\partial L_c}{\partial E} \Big|_{E=E_0} \gamma_{c\lambda}\right]$$

$$L_c = r_c \frac{\partial \mathcal{O}_c}{\partial r_c} \mathcal{O}_c^{-1} \Big|_{r_c = a_c}$$

UNCLASSIFIED

Analysis result: resonance structure

Ex(MeV)	Jpi	Gamma(keV)	Er(MeV)	ImEr(MeV)	E(3He)	Strength
16.46539	1/2-	768.46	 1369	-0.3842	-0.2054	0.06 weak
17.11317	1/2-	0.14	0.5109	-0.6771E-04	0.7664	1.00 strong
17.20115	5/2 -	871.63	0.5989	-0.4358	0.8984	0.40 weak
17.28086	3/2-	147.78	0.6785	-0.0739	1.0178	0.77 strong
17.66538	5/2+	33.33	1.0631	-0.0167	1.5947	0.98 strong
17.83619	7/2+	2036.21	1.2339	-1.0181	1.8509	0.15 weak
17.84773	3/2-	42.52	1.2454	-0.0213	1.8681	0.97 strong
18.04821	3/2+	767.11	1.4459	-0.3836	2.1689	0.54 weak
18.42292	1/2+	5446.32	1.8206	-2.7232	2.7309	0.03 weak
18.67716	1/2-	10278.41	2.0749	-5.1392	3.1124	0.15 weak
19.60923	3/2-	1478.22	3.0069	-0.7391	4.5104	0.52 weak

TUNL-NDG/ENSDF parameters

NB: no strong resonance seen ~100 keV of ³He+⁶Li threshold

$E_{\rm x}$ a (MeV \pm keV)	$J^{\pi}; T$	Γ _{c.m.} (keV)	Decay
16.024 ± 25	$T = \left(\frac{1}{2}\right)$	180 ± 16	
$16.71 \pm 100^{\text{ h}}$	$\left(\frac{5}{2}^+\right); \left(\frac{1}{2}\right)$		
17.076 ± 4	$\frac{1}{2}^-; \frac{3}{2}$	22 ± 5	$(\gamma, {}^{3}{\rm He})$
17.190 ± 25		120 ± 40	p, d, ³ He
$17.54 \pm 100^{\text{ h,i}}$	$\left(\frac{7}{2}^+\right); \left(\frac{1}{2}\right)$		
$17.637 \pm 10^{\text{ i}}$		71 ± 8	$p, d, {}^{3}He, \alpha$

Observable fit: ³He+⁶Li elastic DCS

Observable fit: ⁶Li(³He,p)⁸Be* integrated x-sec

Observable fit: ⁶Li(³He,d)⁷Be integrated x-sec

Observable fit: ⁶Li(³He,γ)⁹B integrated x-sec

Summary, findings & future work

- Nuclear physics/microphysics explanations for the "Li problem" have been entertained
- There are no resonances in ⁹B that reside within ~200 (~100) keV of the d+⁷Be (³He+⁶Li) threshold with 'large' widths 10—40 keV
- This would appear to rule out scenarios considered by Cyburt & Pospelov (2009) and Chakraborty, Fields & Olive(2011) that low-lying, robust resonance in ⁹B could explain the "Li problem"
- It may be worth emphasizing that other nuclear physics explanations, such as insufficiently accurate and/or precise analyses of "known" nuclear reactions, may still be considered for the resolution of the "Li problem"
- While very useful, the TUNL-NDG/ENSDF tables may not be definitive; unitary analyses are req. and sometimes lacking; TODO: submit new 9B analysis
- Need for dedicated, low-energy, high pol. facility
- Improvements in the present analysis: more channels; incorporate p+8Be* angular data; proper treatment three-body final states

Supplementary material

Additional slides follow

BBN reaction network (simplified)

■ Fields Annu. Rev. Nucl. Part. Sci. 2011. 61:47–68

Spite Plateau

Measurement of primordial 7Li from low-metallicity halo dwarf stars

Asplund M, et al. Astrophys. J. 644:229 (2006)